L1 6months Data science roadmap 2025
Hadii aad haysan qof wax kula dhigta ama ku dhiiri galiya kusoo biir Discord serverkan, wuxu ku dhacayaa 7cisho laakin waan update gareyn
Roadmap: Sidaad Data Scientist Ku Noqon Lahayd 6 Bilood Gudahood (Laga Bilaabo Juun 2025)
Assalaamu Calaykum saaxiibayaal, maanta waxaan idinla wadaagayaa jadwal lix bilood ah oo loogu talagalay qof kasta oo raba inuu ku soo biiro dunida xiisaha badan ee Data Science, AI, iyo ML. Hadafku waa in lix bilood ka dib aad diyaar u noqoto inaad shaqo ka raadsato ama aad mashaariicdaada si kalsooni leh ula tacaasho. Aan bilowno!
Hadiia aad maalin walba ugu yaraan 4-5saac aanad helaynin roadmapkan caqli gal maha , sidoo kale dadka background-gooda usan aheyn fieldska kala ah IT, Computer science, Software engineering. roadmapkan inuu waqti ka badan inta loogu talo galay qaato aya laga yaaba, waana macquul midaas.
Bisha 1aad & 2aad: Juun - Luulyo 2025 (Aasaaska Adag)
Ujeeddo: focuska aan saarno waxyabaha aasaasiga ah ee Python, Statistics, iyo SQL.
-
Barashada Python (4 Toddobaad):
- Aasaaska:
Variables
,Data Types
,Loops
,Conditionals
,Functions
. - Qaab-dhismeedka Xogta (Data Structures):
Lists
,Dictionaries
,Sets
,Tuples
. - Laybareeriyada Muhiimka ah: Hordhaca
Pandas
(xogta lagu lafaguro) iyoNumpy
(xisaabta tirooyinka). - Talo: Ku dedaal inaad qorto code maalin kasta, xitaa haddii uu yaraado. Samee layliyo yaryar.
- Aasaaska:
-
Aasaaska Statistics (Isla socodsii Python - 4 Toddobaad):
- Statistics Qeexaya (Descriptive Statistics):
Mean
,Median
,Mode
,Variance
,Standard Deviation
. - Suurtagalnimada (Probability): Aasaaska iyo fikradaha muhiimka ah.
- Qaybinnada Caanka ah (Common Distributions): Sida
Normal Distribution
. - Talo: Isku day inaad fikradaha Statistics-ka ku dabaqdo tusaalooyin aad Python ku samaynayso.
- Statistics Qeexaya (Descriptive Statistics):
-
Hordhaca SQL (3 Toddobaad - laga bilaabo badhtamaha Luulyo):
- Aasaaska Weydiimaha (Core Querying):
SELECT
,WHERE
,ORDER BY
,LIMIT
. - Sida loola tacaalo
NULL values
. - Ku biirinta Miisaska (JOINs):
INNER JOIN
,LEFT JOIN
. - Talo: Raadi database-yo yar yar oo online ah oo aad ku laylisato.
- Aasaaska Weydiimaha (Core Querying):
-
Ku Biir Bulshada Data Science:
- Raadi group-yo online ah (LinkedIn, Discord) oo ay ku kulmaan dadka Data Science xiiseeya. La soco waxa ay ka hadlayaan.
- Halkan kaga biir Discord server keena
Bisha 3aad: Agoosto 2025 (Muuqaaleynta Xogta & Mashruuca Koowaad)
Ujeeddo: Baro sida xogta loogu soo bandhigo si muuqaal ah, bilow mashruucaagii ugu horreeyay ee yar.
-
Muuqaaleynta Xogta (Data Visualization) (2 Toddobaad):
- Qalabka: Hordhac
Tableau
amaPower BI
(dooro midkood). - Laybareeriyada Python: Hordhac
Matplotlib
iyoSeaborn
. - Talo: Xog yar ka soo qaad meelaha xogta laga helo (sida Kaggle) oo ku sawir jaantusyo kala duwan.
- Qalabka: Hordhac
-
Git iyo GitHub (1 Toddobaad):
- Aasaaska: Sida loo keydiyo koodka, loola wadaago, loona maareeyo (
repository
,commit
,push
,pull
). - Talo: project kasta oo aad samayso ku keydi GitHub.
- Aasaaska: Sida loo keydiyo koodka, loola wadaago, loona maareeyo (
-
Mashruucaaga/Projectgaga Koowaad ee Yar (1 Toddobaad iyo wixii ka dambeeya):
- Dooro project yar oo aad ku dabaqi karto wixii aad baratay (Python, SQL, Data Visualization).
- Tusaale: Falanqee xogta iibka dukaanka xaafaddaada, ama samee dashboard yar oo muujinaya xogta cimilada.
- Talo: Hadafku waa inaad soo marto geeddi-socodka oo dhan, laga bilaabo xog ururin ilaa natiijo soo bandhigid.
Bisha 4aad: Sebtembar 2025 (Hordhaca Machine Learning - ML)
Ujeeddo: Faham aasaaska ML iyo sida loo dhiso moodello fudud.
-
Xisaabta ML-ka Loogu Baahan Yahay (Math for ML) (Si kooban - 1 Toddobaad):
Linear Algebra
: Fahamkavectors
iyomatrices
(aragti guud).Calculus
: Fahamkaderivatives
iyogradients
(aragti guud ee sida ay ML u saameyso).- Talo: Ha ku daalin xisaabta inaad si qoto dheer u fahanto , kaliya faham ujeeddada guud ee ay ML khuseeya.
-
Aasaaska Machine Learning (3 Toddobaad):
- Noocyada ML:
Supervised Learning
(gaar ahaanRegression
iyoClassification
) iyoUnsupervised Learning
(gaar ahaanClustering
). - Laybareeriga Muhiimka ah: Hordhac
Scikit-learn
. - Diyaarinta Xogta (Data Preprocessing) iyo Qiimeynta Moodelka (Model Evaluation).
- Talo: Ka shaqee tusaalooyin fudud oo Scikit-learn la socda.
- Noocyada ML:
-
Sii Wad Mashruucaaga/Projectagaga: Ku dar qaybo ML ah mashruucaagii hore ama bilow mid cusub oo ML ku salaysan.
Bisha 5aad: Oktoobar 2025 (Mashaariicda/Projectska, Portfolio-ga & Diyaargarowga Hore)
Ujeeddo: Dhis mashaariic la taaban karo, bilow dhisidda Portfolio-gaaga, oo billow inaad is diyaariso.
-
Mashruuc Weyn oo Portfolio ah (3 Toddobaad):
- Dooro mashruuc aad xiisaynayso oo muujin kara xirfadahaaga (Python, SQL, Data Visualization, ML).
- Hubi inuu yahay mashruuc aad si fiican uga sheekayn karto (Problem, Data, Approach, Results, Challenges).
- Talo: Ka fikir mashaariic xallinaya dhibaatooyin run ah ama falanqeynaya xog xiiso iyo xasaasiyad leh.
-
Dhisidda Portfolio-ga (Joogto):
- Sameyso bog
LinkedIn
- Si wanaagsan u nidaami
GitHub
-kaaga oo ku soo bandhig mashaariicdaada. - Qor
Resume
(CV) kooban oo muujinaya xirfadahaaga iyo mashaariicdaada. - Talo: Bilow inaad si tartiib ah u raadiso shaqooyin (Data Analyst, Junior Data Scientist) si aad u aragto waxa suuqa laga rabo.
- Sameyso bog
-
Practicing
LeetCode
iyo SQL (Joogto):- Billow inaad si joogto ah u xalliso dhibaatooyinka
LeetCode
(gaar ahaan kuwa Python) iyo su'aalaha SQL ee heerka bilowga ah. - Talo: Maalin kasta waqti yar u qoondee(sida 2-3saac).
- Billow inaad si joogto ah u xalliso dhibaatooyinka
Bisha 6aad: Nofeembar 2025 (Mashaariicda Culus, Shaqo Raadinta & Waraysiyada)
Ujeeddo: Dhamaystir mashaariic waaweyn, si xooggan u billow shaqo raadinta, una diyaargarow waraysiyada.
-
Mashruuc Labaad oo Weyn / Dhamaystirka Kii Hore (2 Toddobaad):
- Hubi inuu yahay mid muujinaya xirfado kala duwan oo aad si faahfaahsan uga hadli karto.
-
Shaqo Raadin-ta (Joogto):
- Si firfircoon u raadi oo u apply garee shaqooyinka kugu habboon (Junior Data Scientist, Data Analyst, ML Intern).
- La xiriir dadka ka shaqeeya shirkadaha aad xiisaynayso (
Networking
). - Talo: Marka aad shaqo apply gareeynayso CVga si khaas ah u nidaamo oo xooga saar inaad soo hormariso skillska ay ubahan yihiin.
-
Diyaargarowga Waraysiga (Joogto) ama Interview preparation:
- Ku celceli ka jawaabidda su'aalaha caadiga ah ee waraysiyada (Behavioral questions).
- U diyaargarow su'aalaha farsamada (Technical questions) ee la xiriira Python, SQL, Statistics, iyo ML(badana waa Leetcode style ques).
- Samee
mock interviews
haddii ay suurtagal tahay. - Talo: Faham sida looga jawaabo su'aalaha
case study
.
-
Sii Wad Barashada & Dhaqangelinta: Ha joojin barashada. Sii wad ka shaqeynta ama xalinta laylisyada
LeetCode
iyo SQL.
Gabagabo:
Saaxiibayaal, lixdan bilood waxay noqon doontaa mid shaqo iyo dedaal u baahan, laakiin haddii aad si joogto ah u dadaasho, waxaad gaari kartaa yoolkaaga. Xusuusnow, Data Science waa safar barasho oo aan dhammaad lahayn. Guul ayaan idiin rajaynayaa!
Wixii talo iyo tusaale ah, fadlan ilaso wadaaga.